ALL-ELECTRIC MANIPULATION OF THE SPIN TEXTURE IN FERROELECTRIC AND MULTIFERROIC RASHBA SEMICONDUCTORS

J. Krempaský,¹ G. Springholz,² S. Muff,^{1,3} J. Minár,⁴ M. Gmitra⁵, M. Fanciulli,³ C. A. Vaz¹, A. P. Weber^{1,3}, N. Pilet¹, V. N. Strocov¹ and J. H. Dil^{1,3}

 ¹Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland;
²Institut für Halbleiter-und Festkörperphysik, Johannes Kepler Universität, A-4040 Linz, Austria; ³Institute of Physics, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland; ⁴Technologies-Research Center University of West Bohemia, Pilsen, Czech Republic; ⁵Universität Regensburg Institut I-Theoretische 3193053 Regensburg, Germany

Received 03 April 2017; accepted 25 April 2017

Abstract

Manipulating spin textures of multiferroics through magnetic or electric fields is a timely issue due to the potential applications in low power electronics. In our previous spin- and angle resolved photoemission studies we have established that the ferroelectric semiconductor α -GeTe(111) shows a Rashba-type spin splitting coupled to ferroelectricity [1], as theoretically predicted by S. Picozzi [2]. For moderate Mn-dopings the Ge_{1-x}Mn_xTe diluted magnetic semiconductor takes these functional properties even further because its multiferroic properties entangle with the Rashba and Zeeman splitting [3]. Thus in this new class of materials called MUFERS (MUltiFErroic Rashba Semiconductors) the ferroelectricity and ferromagnetism influence the bulk Rashba-spin texture. We demonstrate operando electrostatic spin manipulation in FERS and MUFERS under gate control. First-principle calculations reveal structural changes inside the switched α -GeTe surface which affect the spin-switching endurance in alternating fields, in addition to unipolar ferroelectric fatigue and ferroelastic effects needed to overcome in the all-electric control. In addition, we show that Ge_{1-x}Mn_xTe is characterized by a multitude of spin-switching paths typical for multiferroics in which the magnetic order is coupled to ferroelectricity through ferroelasticity.

References

- J. Krempaský et al., Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe, PRB 94, 205111 (2016)
- [2] D. Di Sante et al., Adv. Mater. 2012, DOI: 10.1002/adma.201203199
- [3] J. Krempaský et al., Entanglement and manipulation of the magnetic and spin–orbit order in multiferroic Rashba semiconductors, *Nat. Commun.* **7**, 13071 (2016)